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We study a voltage-controlled version of the superconducting flux qubit �Chiorescu et al., Science 299, 1869
�2003�� and show that full control of qubit rotations on the entire Bloch sphere can be achieved. Circuit graph
theory is used to study a setup where voltage sources are attached to the two superconducting islands formed
between the three Josephson junctions in the flux qubit. Applying a voltage allows qubit rotations about the y
axis, in addition to pure x and z rotations obtained in the absence of applied voltages. The orientation and
magnitude of the rotation axis on the Bloch sphere can be tuned by the gate voltages, the external magnetic
flux, and the ratio � between the Josephson energies of the junctions via a flux-tunable junction. We compare
the single-qubit control in the known regime ��1 with the unexplored range ��1 and estimate the decoher-
ence due to voltage fluctuations.

DOI: 10.1103/PhysRevB.74.174510 PACS number�s�: 74.50.�r, 03.67.Lx, 85.25.Cp

I. INTRODUCTION

Superconducting �SC� circuits can exhibit a great variety
of quantum mechanical phenomena and are studied for their
potential as devices for quantum information processing.
Several different circuit implementations of a SC quantum
bit �qubit� have been investigated both theoretically and
experimentally.1,2

A prototype of a SC flux qubit, characterized by a work-
ing regime in which the Josephson energy dominates over
the charging energy, EJ�EC, has been theoretically designed
and experimentally realized,3–9 showing quantum superposi-
tion and coherent evolution of two macroscopic states carry-
ing opposite persistent currents that represent the qubit
states. The flux qubit state is related to a magnetic moment,
and is thus typically controlled via the application of external
magnetic fields which create magnetic flux through the
loop�s� in the circuit. An advantage of flux qubits is their
relative insensitivity to charge fluctuations that can lead to
fast decoherence,10–12 while magnetic fluctuations are typi-
cally more benign.

A second type of SC qubits, the so called charge
qubits,13–17 operates in the limit in which the charge energy
dominates, EC�EJ, thus being relatively insensitive to mag-
netic fluctuations, while having a well defined value of the
charge on a SC island, in which the presence or absence of
an extra Cooper pair determines the state of the qubit. The
intermediate regime in which the Josephson and charge en-
ergies are comparable, EJ�EC, has been investigated and
realized in the “quantronium.”18 Another type of qubit is the
Josephson, or phase, qubit, consisting of a single junction.19

In this paper, we investigate the possibility of enhancing
the control of a SC flux qubit via the application of electro-
static gates.3,20,21 We study the flux qubit proposed by Or-
lando et al.3 While in Ref. 3, the effect of any applied volt-
ages was kept low in order to avoid charge noise, we explore
the possibility of making use of the offset gate charge as an
additional control variable. We define two device parameters.
Assuming for simplicity two Josephson junctions to have
equal Josephson energies �EJ1=EJ2=EJ�, the first parameter
is given by the ratio �=EJ3 /EJ between the Josephson en-

ergy of the third junction and the remaining two junctions.
The regime of interest here is 0.5���1.5 although in prin-
ciple larger values are possible. The second parameter is the
ratio between the Josephson energy and the charging energy,
EJ /EC which for flux qubits is typically about 10 or larger.
We analyze the role of these parameters in detail and, in
addition to the well-studied regime ��1, also explore the
opposite regime ��1. Particular effort is spent looking for a
single-qubit Hamiltonian in which an effective pseudomag-
netic field couples to all three components of the pseudospin
represented by the circuit. A charge qubit in which a �y term
appears in the single-qubit Hamiltonian has been proposed in
Ref. 22. The possibility of changing the relative phase of the
qubit states, together with the capability to flip them, allows
full control over the qubit. Full control on the Bloch sphere
is thought to be very useful in the field of adiabatic quantum
computation.23–25

Circuit theory provides us with a systematic and universal
method for analyzing any electrical circuit that can be repre-
sented by lumped elements.26–29 Through the language of a
graph theoretic formalism, Kirchhoff’s laws and the Hamil-
tonian of the circuit are written in terms of a set of indepen-
dent canonical coordinates that can easily be quantized. The
formalism of Refs. 26–28 is particularly suited for studying
circuits containing superconducting elements, like Josephson
junctions, that are treated as nonlinear inductors. Here, we
make use of the extended circuit theory that accounts for
charging effects and can be applied both for charge and flux
qubits.27

Our main result is the identification of the parameter
range for � and EJ /EC in the voltage-controlled flux qubit in
which the single qubit Hamiltonian acquires a �y term in
addition to the �x and �z terms, thus allowing full control of
the qubit rotations on the Bloch sphere. In this regime, we
compute the dependence of the single-qubit Hamiltonian on
the applied voltages V1 and V2. For the quantitative analysis
of the qubit dynamics we calculate the tunneling amplitudes
appearing in the Hamiltonian as functions of the device pa-
rameters.

The paper is structured as follows. In Sec. II we briefly
review circuit theory26–29 and apply it to the circuit of Fig. 2
to find its Hamiltonian. Section III contains the derivation of
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the effective periodic potential in the Born-Oppenheimer ap-
proximation. In Sec. IV, we address the quantum dynamics
of the circuit and find localized solutions in the periodic
potential. In Sec. V we apply Bloch’s theory in a tight-
binding approximation to find general solutions in the pres-
ence of a voltage bias. Section VI describes the calculation
of the tunneling matrix elements appearing in the qubit
Hamiltonian and their dependence on the device parameters
� and EJ /EC. In Sec. VII, we explore the regime ��1 and
show that a full control on the qubit Hamiltonian is feasible.
In Sec. VIII, we study the decoherence of the qubit due to the
attached voltage sources. Finally, Sec. IX contains a sum-
mary of our results and conclusions.

II. THE CIRCUIT

Here we study a version of the Delft flux qubit3,7 with an
additional voltage control �Fig. 1�. Typically, such a qubit
circuit also comprises a readout superconducting quantum
interference device �SQUID� which can surround or be at-
tached to the qubit. We concentrate on the qubit itself here
and do not include the SQUID in our analysis because the
presence of a readout circuit does not alter the analysis and
results for single-qubit control presented here. A circuit rep-
resentation of the studied device is shown in Fig. 2. The
main loop contains three Josephson junctions and the loop
self-inductance �K�, and is threaded by an external magnetic
flux �x. The junctions form two SC islands to which elec-
trostatic gates with capacitance C1 and C2 are attached and
voltages V1 and V2 are applied. The voltage sources are the
elements in the circuit that are not present in a regular flux
qubit. As long as the junctions are built in such a way that
the Josephson energy dominates, EJ�EC, the qubit is en-
coded in the orientation of the circulating persistent current,
as in Refs. 3 and 7.

We represent the circuit as the oriented graph G shown in
Fig. 2�a�, consisting of N=8 nodes �black dots� ni �i
=1, . . . ,8� and B=13 branches �thin lines� bi �i=1, . . . ,13�,
in which each branch bi represents one of the following
lumped circuit elements: a �bare� Josephson junction J, ca-
pacitance C, inductance K, voltage source V, and impedance
Z. The impedances Z1 and Z2 model the imperfect voltage
sources attached from outside to the quantum circuit. Every
Josephson junction �thick line� consists of two branches: a
bare Josephson junction �J� and the junction capacitance
�CJ� as indicated in Fig. 2�b�. In addition to these two ele-
ments, a Josephson junction can also be combined with a
shunt resistance.26 However, these resistances are typically
very large and can often be neglected; they are not of interest
here. The circuit graph G is divided in two parts. The tree is
a loop-free subgraph which connects all nodes of the circuit
and it is represented by solid lines in Fig. 2. All the branches
f i �i=1, . . . ,F� that do not belong to the tree are called
chords and are represented by dotted lines in Fig. 2. In the
present case, the number of chords, not counting the junction
capacitances CJ, is F=3. There can in principle be induc-
tances contained both in the tree and in the chords which
considerably complicate the analysis.26 However, in our case
there are no inductances in the tree �no L inductances�, so
that our analysis is much simpler than the general one. From
now on, we make use of the fact that the circuit graph Fig. 2
has no inductances in its tree. When a chord is added to the
tree, it gives rise to a unique loop, a fundamental loop. In
other words, the set of fundamental loops Fi of the graph
consists of all loops which contain exactly one chord f i. The
topological information about the graph is encoded in the
fundamental loop matrix F�L� of the circuit �i=1, . . . ,F; j
=1, . . . ,B�,

Fij
�L� = �1, if bj � Fi �same direction� ,

− 1, if bj � Fi �opposite direction� ,

0, if bj � Fi,
� �1�

where the direction of the fundamental loop Fi is given by
the direction of its defining chord f i. The currents I
= �I1 , . . . , IB� and the voltages V= �V1 , . . . ,VB� associated

FIG. 1. �Color online� The voltage-biased SC flux qubit �sche-
matic�. The circuit consists of a SC ring with three Josephson junc-
tions J1, J2, and J3, threaded by an external magnetic flux �x. The
Josephson energy of the middle junction J3 differs from the other
two by a factor of �. A voltage bias Vi is applied to each of the two
islands formed by the three junctions via a capacitor Ci.

FIG. 2. �a� Circuit of a voltage-biased flux qubit �Fig. 1�.
The main loop contains three Josephson junctions and a �chord�
inductance �K�. An external magnetic flux �x threads the SC loop.
The junctions J1 and J2 are biased by two electrostatic gates, rep-
resenting the main feature of the circuit. Solid lines represent the
tree of the circuit graph, while dotted lines are the chords. �b� Each
thick solid line represents a Josephson junction shunted by a
capacitance CJ.
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with the branches of the graph are divided into tree and
chord currents and voltages,

I = �Itr,Ich�, V = �Vtr,Vch� . �2�

With the division into tree and chord branches, the funda-
mental loop matrix assumes the block form

F�L� = �− FT�1� . �3�

We further split up the current and voltage vectors according
to the type of branch �Ref. 27�,

Itr = �IJ,IV,IZ�, Ich = �ICJ
,IC,IK� ,

Vtr = �VJ,VV,VZ�, Vch = �VCJ
,VC,VK� , �4�

such that the matrix F acquires the subblock form

F = 	1 FJC FJK

0 FVC FVK

0 FZC FZK

 . �5�

By inspection of Fig. 2, one finds the loop submatrices of the
circuit according to the rule in Eq. �1�,

FJC = 	1 0

0 1

0 0

, FJK = 	− 1

1

1

 ,

FVC = FZC = �1 0

0 1
�, FVK = FZK = �0

0
� . �6�

With Eq. �3�, Kirchhoff’s laws have the compact form

FIch = − Itr, �7�

FTVtr = Vch − �̇x, �8�

where �x= ��1 , . . . ,�F� is the vector of externally applied
fluxes. Only loops with a nonzero inductance are susceptible
to an external magnetic flux, thus only one external flux
needs to be considered here, �x= �0,0 ,�x�.

The SC phase differences across the junctions �
= �	1 ,	2 ,	3� are related to the canonical variables, the fluxes
�, through the relation

� = 2

�

�0
, �9�

while the canonically conjugate momenta are the charges
Q= �Q1 ,Q2� on the junction capacitance. Using circuit
theory27 and ignoring the dissipative circuit elements Z1 and
Z2 for the moment, we find the following Hamiltonian of the
circuit Fig. 2:

HS =
1

2
�Q − CVVV�TC−1�Q − CVVV� + U��� , �10�

U��� = − EJ cos 2

�

�0
+

1

2
�TM0� + �TN�x, �11�

where we have defined cos �= �cos 	1 ,cos 	2 ,cos 	3�. The
Josephson energy matrix is given as follows:

EJ = ��0

2

�2

LJ
−1 = diag�EJ,EJ,�EJ� , �12�

where �0=h /2e is the SC quantum of magnetic flux. We
assume that the Josephson energies and capacitances of the
junctions J1 and J2 are equal, EJ1=EJ2
EJ and CJ1=CJ2

CJ, and we define the ratio �=EJ3 /EJ. The capacitance
matrices of the circuit are

CJ = diag�CJ,CJ,CJ3�, C = diag�C1,C2� . �13�

The source voltage vector is defined as VV= �V1 ,V2�. The
derived capacitance matrices C and CV and the derived �in-
verse� inductance matrices M0 and N of Eq. �10� are given in
the Appendix A.

III. BORN-OPPENHEIMER APPROXIMATION

We consider now the limit in which the chord inductance
K is small compared to the Josephson inductances, K�LJ.
By means of the Born-Oppenheimer approximation, we de-
rive an effective two-dimensional potential as a function of
two “slow” degrees of freedom. Our analysis follows closely
that of Ref. 29. For K�LJ, the potential Eq. �11� gives rise to
a hard constraint for the variables �, in the form of the linear
equation

M0� + N	x = 0, �14�

where the external magnetic flux is written as 	x
=2
�x /�0. The general solution of the Eq. �14�,

� = 	 	1

	2

	1 − 	2 + 	x

 , �15�

depends on the two variables 	1 and 	2 only. Thus, in the
limit of small K, the dynamics are restricted to a plane in
three-dimensional � space. The potential, restricted to the
plane, is then a function of 	1 and 	2 only �Ref. 3�,

U��� = EJ�− cos�	1� − cos�	2� − � cos�	1 − 	2 + 	x�� .

�16�

A density plot of U for �=0.8 as a function of 	1 and 	2 is
shown in the inset of Fig. 3. The minima of the potential are
found by solving the equation grad U=0, which yields �Ref.
3�

sin 	1 = − sin 	2 = − sin 	*, �17�

where 	* is the solution of the self-consistent equation

sin 	* = � sin�2	* + 	x� . �18�

The potential forms two wells whose relative depth is deter-
mined by the value of the externally applied flux 	x. In order
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to have a symmetric double well we choose 	x=
 which
yields two minima at the points �R= �	* ,−	*� and 	L

= �−	* ,	*� with 	*=arccos�1/2���0. If ��0.5, then there
are two distinct minima. Taking into account the periodicity
of the potential, a complete set of solutions of Eq. �18� is
�= ± �	* ,−	*�T+2
�n ,m�, with integer n, m. We plot the
double well potential between the two minima in Fig. 3 for
different values of � in the symmetric case 	x=
.

IV. QUANTUM DYNAMICS

In this section, we look for localized solutions of the
Schrödinger equation H�=E�, with the Hamiltonian of Eq.
�10�. We expand the potential around the two minimum con-
figurations, keeping contributions up to the second order in
�, and solve the Schrödinger equation in these two different
points �denoting them L and R for left and right�. We obtain
the quadratic Hamiltonian

HL,R = 1
2 �QTC−1Q + �TLlin;L,R

−1 �� , �19�

where the linearized inductance Llin;L,R is defined

Llin;L,R
−1 = M0 + LJ

−1 cos �L,R. �20�

To simplify the kinetic part in Eq. �19�, we perform a canoni-
cal transformation on the variable � and its conjugate mo-
mentum Q �Ref. 29�,

� = �c��C−1�T�̃ ,

Q = �CQ̃/�c , �21�

where c is an arbitrary unit capacitance �e.g., c=CJ�. We
define the diagonal matrix �L,R

2 such that it satisfies

��C−1�TLlin;L,R
−1 �C−1 = OT�L,R

2 O , �22�

where O is an orthogonal matrix that diagonalizes the left-
hand side �lhs� of Eq. �22�. This allows us to further simplify

the Hamiltonian by making the following canonical transfor-
mation, preserving the Poisson brackets:

�� = O�̃, Q� = OQ̃ , �23�

that leads us to the Hamiltonian,

HL,R = 1
2 �c−1Q�2 + ��T�L,R

2 ��� . �24�

In the case of a symmetric potential �when 	x=
�, the ma-
trices Llin;L,R of the linearized problem are equal,

Llin;L = Llin;R, and �L = �R, �25�

hence we drop the subscript L and R for simplicity.
We quantize the Hamiltonian by imposing the canonical

commutation relations,

��i,Qj� = i
�ij , �26�

where �i and Qj are the components of the vectors � and Q,
respectively. The ground-state wave function is the Gaussian,

����� = �det M

2 �1/4

exp�−
1

2
�� − ���TM�� − ���� ,

�27�

where �=L, R, and

M =
1



��0

2

�2

�COT�O�C . �28�

For the wave function overlap integral between the left and
right state, S= ��L ��R�, we find

S = exp�− 1
4��TM��� , �29�

where ��=�R−�L=2 arccos�1/2���1,−1� is the distance
between the right �R� and left �L� potential minima �Fig. 4�.

FIG. 3. �Color online� Plot of the potential U��� for 	x=
 along
the line 	1+	2=0 as a function of 	� =

1
�2

�	1−	2� for several values
of �. In the curve for �=0.5 the two minima are degenerate, while
for ��0.5 they split showing the double well. The inset is a density
plot of the potential for �=0.8, showing the two minima and the
line 	1+	2=0.

FIG. 4. �Color online� Density plot of the double well potential
U�	1 ,	2� in units of EJ for �=0.8 on a logarithmic scale. The
periodicity of the potential is evident; each unit cell contains two
minima �black�. The primitive vectors of the Bravais lattice are
denoted a1 and a2 while t1 and t2 are the tunneling matrix elements
between the nearest-neighbor minima.
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V. BLOCH THEORY

Given the periodicity of the problem Eq. �10� with the
potential Eq. �16� in the Born-Oppenheimer approximation,
an important question concerns the boundary conditions of
the problem, i.e., the choice of the appropriate Hilbert space.
The question is whether the domain of � should be the infi-
nite plane or the square T= �−
 ,
�2 with periodic boundary
conditions. This question has been discussed extensively in
the literature.30–32 Since in our case, a shift of 	1 or 	2 by 2

creates a state which is physically indistinguishable from the
one before the shift, we choose the compact domain T and
impose periodic boundary conditions on the wave function.
However, we are going to extend the domain to the infinite
domain in order to facilitate the calculation.

A. The periodic problem

The approximate solutions constructed in Sec. IV are a
good starting point, but they are insensitive to the boundary
conditions. However, the boundary conditions are essential if
finite bias voltages VV are to be taken into account. The
problem at hand is defined on the square with side 2
 �see
inset of Fig. 3� with periodic boundary conditions; i.e., the
phases �= �	1 ,	2�T are in the compact domain T= �−
 ,
�2

and the wave function at opposite edges needs to be identi-
cal, ��−
 ,	2�=��
 ,	2� and ��	1 ,−
�=��	1 ,
�, such
that T acquires the topology of a torus. If the boundary con-
ditions are ignored, e.g., in the case where the wave function
is known to be vanishingly small at the boundary, then the
bias voltages VV in the Hamiltonian Eq. �10� can be removed
completely with a gauge transformation and the solutions
will be independent of VV.

We proceed as follows: We first solve the problem Eq.
�10� in the infinite two-dimensional plane and then choose
those solutions that satisfy the periodic boundary conditions
and then restrict them to the compact domain T. We choose
this approach because the problem on the infinite domain is
well known: the solutions ��k are given by Bloch’s theorem
for the motion of a particle in a crystal and satisfy

��k�� + 2
m� = e2
im·k��k��� , �30�

for m= �m1 ,m2� with integer m1 and m2. The minima of our
potential, Eq. �16�, define a two-dimensional square Bravais
lattice with a two-point basis, which looks like a sheared
hexagonal lattice �although it is a square lattice�. The lattice
and its primitive vectors a1= �2
 ,0� and a2= �0,2
� are
shown in Fig. 4. The lattice basis is given by the vectors
bL= �0,0� and bR=2�	* ,−	*�. Each lattice point can be
identified by the Bravais lattice vector n and the basis index
�=L, R. As indicated above, not all the Bloch functions
satisfying the Schrödinger equation on the infinite domain
have a physical meaning, but only those that are also 2

periodic. In the case of zero applied voltage bias, the only
value of k yielding to a periodic wave function is k=0.

B. Tight-binding approximation

In order to construct approximate Bloch states, we first
form localized Wannier orbitals �� by orthonormalizing the

localized solutions �� ��=L,R� from Eq. �27�. These Wan-
nier orbitals are centered at arbitrary lattice points, ��n���
=����−2
n� and satisfy the orthonormality relations

���n���m� = ����nm. �31�

The Bloch states are then related to the Wannier orbitals via
a Fourier transform,

��k��� = �
n�Z2

e2
ik·n��n��� , �32�

��n��� = �
FBZ

dke−2
ik·n��k��� , �33�

where the integration in Eq. �33� is over the first Brillouin
zone �FBZ�, i.e., ki� �−1/2 ,1 /2�. The label � plays the role
of the energy band label in Bloch theory. The Bloch states
��k form a complete set of orthonormal states in k space,
where ki� �−1/2 ,1 /2�,

���k���q� = �����k − q� , �34�

�
�
� dk���k����k� = 1 . �35�

For the completeness relation Eq. �35� to hold, we must sum
over all bands �, corresponding to a complete set of Wannier
functions. Here, in order to describe the low-energy physics
of the system, we restrict ourselves to the two lowest bands
�=L, R, related to the left and right potential minimum in
the unit cell, and neglect higher excited states of the double
wells. This restriction is justified if the energy gap between
the lowest two states is much smaller than the gap between
the two lowest and all higher states �see Table I�. We nor-
malize the Bloch functions on the unit cell T,

�
T

d���k�����2 = 1. �36�

Now we can expand the Hamiltonian in the Bloch function
basis with Eq. �35�, and then apply Eq. �32�,

H � �
��
� dkdq���k����k�H���q����q�

= �
��
� dkdqHkq

�����k����q� , �37�

where the approximation in the first line consists in omitting
bands that are energetically higher than �=L, R �see above�.
The matrix elements of the Hamiltonian in the Bloch basis
are

Hkq
�� = �

n,m�Z2

e−2
i�k·n−q·m����n�H���m� . �38�

For fixed k and q, Eq. �38� is reduced to a 2�2 Hermitian
matrix. The main contributions to Eq. �38� stem from either
tunneling between the two sites in the same unit cell �intra-
cell� or between site L in one cell and site R in an adjacent
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cell �intercell�, see Fig. 4. For the off-diagonal element we
can write

Hkq
LR � �

n�Z2

e−2
i�k−q�·n���Ln�H��Rn�

+ e−2
iq1��Ln�H��Rn−e1
� + e2
iq2��Ln�H��Rn+e2

�� ,

�39�

where e1= �1,0� and e2= �0,1�. Due to the lattice periodicity,
the quantities �see Fig. 4�

�0 = ��L�R�n�H��L�R�n� , �40�

t1 = ��L�R�n�H��R�L�n� , �41�

t2 = ��L�R�n�H��R�L�n−e1
� �42�

=��L�R�n�H��R�L�n+e2
� , �43�

are independent of the lattice site n, and thus from Eq. �38�,
we find Hkq

�����k−q�Hk
��. We can now write the 2�2

Hamiltonian as follows:

Hk = �01 +
1

2
� 0 ��k�*

��k� 0
� , �44�

��k� = 2�t1 + t2�e2
ik1 + e−2
ik2�� . �45�

The equality in Eq. �43� is due to the invariance of the po-
tential under the transformation �	1 ,	2�→−�	2 ,	1� and it is
valid also in the 	x�
 case. The eigenvalues of the problem
are

�±�k� = �0 ± 1
2 ���k�� , �46�

and represent a typical two-band dispersion relation. In the
case of zero external applied voltage only the k=0 Bloch
functions satisfy the correct boundary conditions, i.e., are
periodic. For k=0 we recognize the qubit Hamiltonian that,
in the symmetric double well case, is given by a �x term
�Ref. 3�,

H = �0 + �t1 + 2t2��x. �47�

C. Effect of a voltage bias

Now, we study the case with an �nonzero� external bias
voltage. Given the Bloch function ��k that satisfies the
Schrödinger equation for the Hamiltonian Eq. �10� for zero
applied voltages, VV=0, we find for the solution a wave
function for finite voltages VV�0,

u�k��� = e−i�·Qg/2e��k��� , �48�

where we have defined the gate charge vector as Qg=CVVV.
The above statement can be directly verified by substituting
u�k from Eq. �48� into the Schrödinger equation with Eq.
�10� while using ��k that solves the problem for VV=0. The
solutions in the presence of an applied voltage bias satisfy

u�k�� + 2
n� = e2
in·�k−Qg/2e�u�k��� . �49�

For the periodicity of the wave function on the compact do-
main, we have to choose k=Qg /2e. This means that u�k is
the periodic part of the Bloch function for k=Qg /2e. By
substituting this into Eqs. �44� and �45�, we obtain the qubit
Hamiltonian

H =
1

2
�Re����x + Im����y + ��z� =

1

2
B · � , �50�

where we have also included the effect of a �small� bias flux
that tilts the double well, ��2�1−1/4�2EJ�	x−
�, where
�= ��x ,�y ,�z� are the Pauli matrices, and

Re��� = 2�t1 + 2t2 cos�
k+�cos�
k−�� , �51�

Im��� = 4t2 cos�
k+�sin�
k−� , �52�

with k±= �C1V1±C2V2� /2e. The eigenstates for �=0 are

�0� =
1
�2

�− e−i��L� + �R�� , �53�

�1� =
1
�2

�e−i��L� + �R�� , �54�

where tan �=Im��� /Re���. In Eq. �50�, we have introduced
the pseudofield B= (Re��� , Im��� ,�).

TABLE I. Values of t1, t2, their ratio t2 / t1, the energy gap ���0 at zero applied voltage, and the minimum
of the gap ���min for a series of values of � and EJ /EC. In the last column we report the ratio of the energy
difference E12 between the second and first excited state and the qubit gap ���0.

� EJ /EC t2 / t1

t1 /EJ

�10−3
t2 /EJ

�10−5 ���0 /EJ ���min/ ���0 E12/ ���0

0.80 35 0.0062 −2.9 −1.8 0.0059 0.98 82

0.85 30 0.030 −1.9 −5.8 0.0040 0.88 126

0.90 25 0.12 −1.5 −18 0.0037 0.61 149

0.95 20 0.39 −1.5 −59 0.0054 0.12 116

1.00 15 0.97 −2.05 −198 0.012 0 61

1.05 10 1.77 −4.2 −740 0.038 0 24
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VI. CALCULATION OF t1 AND t2

For a quantitative analysis of the single-qubit Hamiltonian
Eq. �50�, we have to calculate the tunneling matrix elements
t1 and t2. In order to do so, we require a set of orthonormal
Wannier functions on the infinite two-dimensional lattice de-
fined by the potential U, Eq. �11�. We start from the nonor-
thogonal set of Gaussian orbitals ���n� consisting of the so-
lution Eq. �27�, shifted by a lattice vector n,

��n��� = ���� − 2
n� . �55�

The orthonormalized Wannier functions can be written as a
linear combination of these Gaussians,

���n� = �
�=L,R,l�Z2

G�l,�n���l� . �56�

To form a complete set of orthonormal functions the follow-
ing relation must be satisfied:

���n���m� = �G†SG��n,�m = ����nm, �57�

where S is the �real and symmetric� overlap matrix,

S�n,�m =� d���n�����m��� . �58�

We solve Eq. �57� with

GT = G = �S−1. �59�

The inverse of S exists due to its positive definiteness. The
entries of the overlap matrix S are equal to 1 on the diagonal,
whereas the off-diagonal elements are positive and �1 be-
cause the orbitals ��n are well localized. We define the ma-
trix S�1� with all matrix elements �1 via

S = 1 + S�1� = 1 + �SLL SLR

SLR
T SRR

� , �60�

and find, keeping only first order terms in S�1�,

G � �S−1 � 1 −
1

2
S�1�. �61�

Note that SLL and SRR have zeros on the diagonal.
In our tight-binding approximation, we consider five unit

cells, a center cell with its four nearest neighbors, corre-
sponding to the lattice vectors ��0,0� , �±1,0� , �0, ±1��. This
means that S and G are 10�10 matrices, which can also be
expressed as 2�2 block matrices, each block of dimension
5�5. The two largest values are given by s1=SLn,Rn and
s2=SLn,Rn−e1

=SLn,Rn+e2
with the nearest neighbor cell. Taking

only these two largest overlaps into account, we obtain SLL
=SRR�0 and

SLR �	
s1 s2 s2 0 0

0 s1 0 0 0

0 0 s1 0 0

s2 0 0 s1 0

s2 0 0 0 s1


 . �62�

Having the matrix G and S we can calculate the tunneling
matrix

T�n,�m = ���n�H���m� = �G†TG��n,�m, �63�

where the entries of the matrix T are given as follows:

T�n,�m = ���n�H���m� . �64�

Since both the ���n� and the ���n� states are localized at the
lattice position n, the matrices T and T both have the same
nonzero entries as S. The tunneling matrix T has the same
block form as S with TLL=TRR=�01 and TLR having the same
structure as SLR with s1 and s2 replaced by t1 and t2, given as
t1=TLn,Rn and t2=TLn,Rn−e1

=TLn,Rn+e2
. The overlaps s1 and

s2, together with the transition amplitudes t1 and t2, depend
exponentially on the two parameters � and EJ /EC. A detailed
analysis is given below; here, we anticipate the approximate
relations t1 / t2�1 if ��1, t1 / t2�1 if ��1, and t1 / t2�1 if
�=1, and t1 / t2=1 if C1=C2=0.

Now, we numerically determine the tunneling matrix ele-
ments t1 and t2 from Eqs. �63� and �64� and analyze their
dependence on the external parameters. This dependence can
then be used to control the qubit Hamiltonian. The external
parameters fall into two categories, those that can be varied
freely, like magnetic fields and bias voltages, and the device
parameters, that are fixed for a specific device. Two main
types of device parameters characterize the Hamiltonian: �i�
the junction capacitance CJ that determines the charging en-
ergy EC=e2 /2CJ and �ii� the Josephson inductance LJ which
determines the Josephson energy EJ= ��0 /2
�2 /LJ. In addi-
tion, we have the ratio �=EJ3 /EJ.

The potential U��� can be modified in two ways. The
external magnetic flux �x=�0	x /2
 is responsible for the
symmetry of the double well within a unit cell and can give
rise to a �z term in the single qubit Hamiltonian while �
determines the height of the barrier between the wells in a
cell and between two nearest neighbor unit cells. Thus �

FIG. 5. The ratio t2 / t1 between the tunneling matrix elements,
plotted as a function of ��1 for several values of EJ /EC.
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affects the values of the tunneling amplitudes between dif-
ferent sites in the lattice. Although � is a fixed device pa-
rameter for the setup shown in Fig. 1, a modified setup in
which the middle junction is made flux tunable has been
proposed;1,3 a flux tunable junction is achieved by “shunting”
the third junction with a further junction and using an exter-
nal magnetic field to tune it.

In the tight-binding picture, the off-diagonal element � of
the qubit Hamiltonian is a complex quantity that depends on
the two tunneling amplitudes t1 and t2, whose relative
strength can be set by � and the ratio EJ /EC. The latter enters
as a common factor into the frequencies of the Gaussian
localized orbitals, determining the size of their overlaps and
affecting only the energy gap ���. An increase of the value of
� implies a decrease of the tunneling amplitudes t1 and t2,
caused by an increase of the height of the barriers. Thus a
careful choice of the two parameters is crucial in determining
the behavior of the system. From Eq. �45�, we find that if
t2 / t1�1 then � will be �almost� real. In order to obtain a
sizable imaginary part of �, t2 / t1 must be sufficiently large.
In Fig. 5, we plot the ratio t2 / t1 versus �, for several values
of the EJ /EC. Although all the curves approach the value
t2 / t1�1 for �→1, as soon as ��1, a strong variation in
t2 / t1 is observed for large EJ /EC. In Fig. 6, we plot t2 / t1
versus EJ /EC for different values of �. For �=1, the curve is
almost a constant. In Table I, we report a set of quantities
calculated by varying both � and EJ /EC, such as to keep the

energy gap �0 at zero applied voltage of the order of
�0.1EC.

The parameters of an experimentally realized flux qubit
�Delft qubit�7 are �=0.8 and EJ /EC=35 and are given in the
first row of Table I. In this case, the ratio t2 / t1 is very small
and the contribution of t2 is negligible. This choice of param-
eters of the Delft qubit therefore does not allow the manifes-
tation of a significant �y term in the single-qubit Hamil-
tonian, for any value of the bias voltage.

In Fig. 7, we plot the real and imaginary part of � as a
function of the applied voltage V1, expressed in the gate
charge Q1=C1V1, while keeping the other gate voltage fixed
such that Q2 /2e=C2V2 /2e=0.5. If the real part of � can be
tuned from a finite value to zero while the imaginary part of
� remains finite �as in Fig. 7�c��, then the pseudofield B can
point along arbitrary angles in the equator plane of the Bloch
sphere. The magnitude of the pseudofield can be controlled
in principle by changing �, e.g., with a flux-tunable junction.
In Fig. 8, we plot the real and imaginary part of � in the case
where both voltages are varied simultaneously such that V1
=−V2 as a function of �Q /2e=C�V1−V2� /2e. In Fig. 9 we
plot the gap ��� as a function of �Q /2e=C�V1−V2� /2e �solid
line� and of �Q1+Q2� /2e=C�V1+V2� /2e �dashed line� for
this set of parameters.

FIG. 7. Plot of the real and imaginary part of � as a function of
Q1 /2e=CV1 /2e for CV2 /2e=0.5 for �a� �=0.95, EJ /EC=35; �b�
�=0.95, EJ /EC=10; and �c� �=1, EJ /EC=15.

FIG. 6. The ratio t2 / t1 between the tunneling matrix elements,
plotted as a function of EJ /EC for several values of ��1.

FIG. 8. Plot of the real and imaginary part of � as a function of
�Q /2e=C�V1−V2� /2e for V1+V2=0 choosing �a� �=0.95, EJ /EC

=35, �b� �=0.95, EJ /EC=10 and �c� �=1, EJ /EC=15.

FIG. 9. Plot of the gap versus �Q /2e=C�V1−V2� /2e �solid line�
and C�V1+V2� /2e �dashed line�, for �=1 and EJ /EC=15. In this
case both the amplitude of oscillation and the cross region of the
curves are appreciable.
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VII. FULL CONTROL FOR ��1

The flux qubit realized at Delft7 operates with a ratio �
=0.8�1 between the Josephson energies of its junctions. As
shown in Table I, the ratio of tunneling matrix elements for
this parameter choice is t2 / t1=0.0062, thus the effect of the
applied voltages is negligible. Two other regimes for � are
interesting, namely ��1 and ��1.

In the former, t1 and t2 are approximately equal. In this
case, � can tunnel from a left minimum �L� to a right one �R�
via both an intracell or an intercell tunneling process with
almost equal probability. However, while intercell tunneling
can be controlled via the applied voltages V1 and V2, allow-
ing superposition with a nonzero relative phase of the qubit
states, the intracell transition amplitude remains constant,
once the parameters � and EJ /EC are fixed, thus leading only
to qubit flips. In Table I, for each value of ��1, the mini-
mum of the gap is a finite quantity and can be calculated by
the minimization of Eq. �46� with respect to k. However, for
��1 there is a value of the external applied voltage for
which the gap goes to zero �Fig. 9�.

We are particularly interested in the regime ��1. In this
case t1� t2, i.e., the intracell tunneling between two minima
is inhibited and, with a suitable choice of �, can be com-
pletely suppressed �Figs. 10 and 11�. In this situation, the
system can be described by a one-dimensional chain in
which every even �odd� site is labeled as a “left” minimum L
while the remaining sites are labeled “right” minima R, see
Fig. 12. The tunneling matrix element between the sites is t2
�t1=0�. Note that, due to the periodicity of the system, all L
�R� sites have to be identified with each other, since they
describe the same configuration.

From Eqs. �51� and �52�, we immediately find that, for
t1 / t2→0, we gain full control of the direction of the effective
pseudofield B in the equatorial plane of the Bloch sphere,
since

��k+,k−� = 4t2 cos�
k+�ei
k−, �65�

where k±= �C1V1±C2V2� /2e. The sum and difference of the
gate charges therefore independently control the qubit energy
gap and the angle � of the pseudofield,

��� = 4�t2 cos�
k+��, � = 
k−. �66�

VIII. CHARGE DECOHERENCE

Voltage fluctuations from imperfect voltage sources or
other fluctuating charges in the environment lead to charge
fluctuations on the two islands in the circuit and thus to
decoherence of the qubit. Moreover, we are considering here
a situation where the sensitivity to external voltages has been
deliberately enhanced and therefore it can be expected that
charge fluctuations cannot be ignored. An estimate of the
decoherence time for the same circuit has been developed in
Ref. 10, where it is found to be 0.1 s.

In order to model bias voltage fluctuations, we include the
two impedances Z1 and Z2 �Fig. 2� in our analysis. From
circuit theory,27 we can then obtain a Caldeira-Leggett model
for the system coupled to its charge environment,

H = HS + HB + HSB, �67�

where HS from Eq. �10� describes the dissipationless ele-
ments of the circuit, and

FIG. 11. The ratio t1 / t2 between the tunneling matrix elements,
plotted as a function of EJ /EC for several values of ��1.

FIG. 12. �Color online� Density plot of the double well potential
U�	1 ,	2� for �=1.4, on a logarithmic scale. Two equivalent one-
dimensional chains with nearest neighbor interaction are high-
lighted in the figure.

FIG. 10. The ratio t1 / t2 between the tunneling matrix elements,
plotted as a function of ��1 for several values of EJ /EC.

FULL CONTROL OF QUBIT ROTATIONS IN A… PHYSICAL REVIEW B 74, 174510 �2006�

174510-9



HB = �
j=1,2

�
�

� pj�
2

2mj�
+

1

2
mj�� j�

2 xj�
2 � , �68�

is the Hamiltonian of the degrees of freedom of two inde-
pendent baths of harmonic oscillators that are used to model
the two impedances, and finally

HSB = �
j=1,2

m j · Q�
�

cj�xj�, �69�

describes the system-bath coupling, where m1=C−1�C1 ,0�T

and m2=C−1�0,C2�T. The coupling constants cj� are related
to Zj via the spectral densities

Jj��� = − � Re Zj��� =



2 �
�

cj�
2

mj�� j�
��� − � j�� . �70�

The decoherence rates in the Born-Markov approximation
are given by �Ref. 27�

1

T1
=

4


2 �
j=1,2

�m j · �0�Q�1��2� Re Zj���coth
�

2kBT
, �71�

1

T�

=
1


2 �
j=1,2

�m j · ��0�Q�0� − �1�Q�1���2 Re Zj�0�2kBT .

�72�

Now we compute the matrix elements of the charge op-
erator Q=−2ie� in the �0�, �1� basis. Following the deriva-
tion of the Hamiltonian in Sec. V B, we start from:

�u�k�Q�u�k� = − 2ek��� − 2ie���k�����k� . �73�

The matrix elements of Q between the Bloch states

���k�Q���k� = �
n,m�Z2

e2
ik·�n−m�Q�m,�n, �74�

are given in terms of the matrix elements of � between the
Wannier functions

Q�n,�m = − 2ei���n� � ���m� = − 2ei�GTPG��n,�m, �75�

and, in turn, through the G matrix, they are expressed in
terms of the Gaussian states,

P�n,�m = ���n� � ���m� =
1

2
M���n,�mS�n,�m, �76�

where the matrix M is defined in Eq. �28�, ���n,�m=��

−��+2
�m−n�, and the S matrix is defined in Eq. �58�.
We only keep the leading matrix elements s1 and s2 in the

overlap matrix S when calculating the G and P matrices �see
Sec. VI�. Since the largest contributions of P are proportional
to s1 and s2, we can use G�1, and thus Q�n,�m�P�n,�m
�S�n,�m. We consider the diagonal term and the off-diagonal
term separately and obtain,

�u�k�Q�u�k� = − Qg, �77�

�uLk�Q�uRk� = − eiM�s1�� + s2��� − 2
e1�e2
ik1

+ s2��� + 2
e2�e−2
ik2� , �78�

where s1, s2, ��=�R−�L, and the matrix M depend on �
=EJ3 /EJ and EJ /EC. In the qubit basis we find,

�0�Q�0� − �1�Q�1� = − eM�s1 sin����� + s2 sin�� + 2
k1�

���� − 2
e1� + s2 sin�� − 2
k2�

���� + 2
e2�� , �79�

�0�Q�1� = ieM�s1 cos����� + s2 cos�� + 2
k1���� − 2
e1�

+ s2 cos�� − 2
k2���� + 2
e2�� , �80�

where tan �=Im � /Re� is a function of k1,2=C1,2V1,2 /2e.
Using Eqs. �71�, �72�, �79�, and �80� we can express the
decoherence rates in a more explicit way,

1

T1
= 2


EJ




Re Z

RQ
� C

CJ
�2

s2
2F1�V1,V2� , �81�

1

T�

= 2

2kBT




Re Z

RQ
� C

CJ
�2

s2
2F��V1,V2� , �82�

where s2, F1, and F� are given in Appendix C. F1 and F�

are periodic functions of the applied voltages V1 and V2 that
depend on the parameters �, EJ /EC, and on s1 /s2. They can
be estimated to be at most of order one, depending on the
choice of parameters and the applied voltages. In Eqs. �81�
and �82� we chose Z�Z1�Z2, and RQ=h /e2 is the quantum
of resistance.

In the regime ��1 we have s2�s1. For �=1.4, EJ /EC
=15, and C /CJ=0.02 we find that s2=8�10−4. An estimate
for T�100 mK, ReZ�1 k�, and EJ=250 GHz produces
decoherence times in the millisecond range,

1

T1
�

F1�V1,V2�
F1,max

1

6 ms
, �83�

1

T�

�
F��V1,V2�

F�,max

1

12 ms
. �84�

For some particular values of V1 and V2 the functions F1 or
F� vanish, implying that 1 /T1→0 or 1/T�→0. In particular,
F1=0 for �C1V1 ,C2V2� /2e= ± �1/2 ,0�, ±�0,1 /2�,
±�1/4 ,1 /4�, ±�1/8 ,−1/8�, ±�3/8 ,−3/8� in the FBZ, and
F�=0 for �C1V1 ,C2V2� /2e= �n /2 ,m /2�, ±�1/4 ,−1/4�
+ �n ,m�, with n, m�Z. The two functions have a common
set of zeros, namely ±�n /2 ,0�, ±�0,m /2�, with n, m�Z. In
these cases, both 1/T1, 1 /T�→0.

For the regime ��1 we have that s1�s2 and we can
neglect terms containing s2. Choosing �=0.8 and EJ /EC
=35 we find s1=1.3�10−5. It follows that the decoherence
rates are strongly suppressed and an estimate shows that they
are below 1 Hz. This means that in this case the main pro-
cess that causes decoherence is not due to the charge degrees
of freedom. In fact for the Delft qubit7 that operates in this
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regime, the dephasing and the relaxation times caused by
other mechanisms are much smaller, T�=20 ns and T1
=900 ns.

The physical reason for the small decoherence and relax-
ation rates found here is that, despite the voltage bias, we are
still dealing with a flux qubit whose states are indistinguish-
able from their charge distribution, as seen from Eq. �77�.

IX. RESULTS AND CONCLUSIONS

By means of circuit theory and a tight-binding approxi-
mation, we have analyzed a voltage-controlled SC flux qubit
circuit that allows full control of the single-qubit Hamil-
tonian Eq. �50�, with �x, �y, and �z terms, in order to allow
arbitrary single qubit operations.

One of the main results of this work is the computation of
the tunneling matrix elements appearing in the single qubit
Hamiltonian as a function of the device parameters � and
EJ /EC. This allowed us to explore new possible working
regimes of the system, looking for a range of parameters for
which a full control on qubit rotations is feasible. Substan-
tially, the qubit can work in two different regimes, ��1 and
��1, showing different features. In particular, for ��1, the
pseudomagnetic field B that couples to the qubit in the
Hamiltonian has a nonzero y component. This allows full
control of qubit rotations on the Bloch sphere through the
applied voltages V1 and V2. In fact, in the Hamiltonian, Eq.
�50�, the off-diagonal term �, given in Eq. �45�, contains the
voltages V1,2 and the sensitivity to V1,2 is determined by the
tunneling parameters t1 and t2 in Eqs. �41� and �43�.

For ��1, we find t1� t2. The effect of t2, and thus of the
applied voltages, for the value of parameters of the Delft
qubit,7 is negligible as shown in Table I, but can be greatly
enhanced for a suitable choice of � and EJ /EC �see Figs. 5
and 6�, thus allowing good control in the real and imaginary
parts of �, as shown in Eqs. �51� and �52� and in Figs. 7 and
8.

In the case ��1, the roles of t1 and t2 are interchanged,
as shown in Figs. 10 and 11, and a regime in which a full
control of the single-qubit Hamiltonian becomes possible.
For a suitable choice of � and EJ /EC, the tunneling param-
eter t1 become vanishingly small, giving rise to a simple
dependence of � on the voltages, as found in Eqs. �65� and
�66�.

Our analysis is based on the two-level approximation, i.e.,
we assume that we can neglect all high levels besides the two
lowest ones. This approximation is justified if the energy gap
E12 between the two lowest levels and any higher level is
sufficiently large, in particular, larger than the qubit gap
E01= ���. The gap E12 can be roughly estimated as the plasma
frequency, i.e., the smallest of the frequencies of the �aniso-
tropic� harmonic oscillator arising from the linearization of
the equation of motion around the minimum configurations
of the potential. This frequency is given by �also see Appen-
dix B� �LC=1/�CJLJ=�8EJEC /
. In Table I, we report the
ratio of E12 and the qubit gap ��0� at zero applied voltage.
For all parameter values studied, E12 exceeds 2 ��0� by more
than a factor of 20, in many relevant cases even by two
orders of magnitude, thus justifying the two-level approxi-
mation.

Finally, we have studied the decoherence due to charge
fluctuations of the voltage sources. Our result for the T1

−1 and
T�

−1 rates is given in Eqs. �81� and �82�, an estimate of which
yields a coherence time longer than �1 ms, leading to the
conclusion that charge fluctuations are not the main source of
decoherence, even in the regime in which the sensitivity to
external voltages is enhanced. The coherence of the system is
well preserved, since the qubit is still essentially a SC flux
qubit, i.e., the �0� and �1� states have nearly identical charge
configurations.

In conclusion, based on our analysis we find that full con-
trol of single-qubit operations in a SC flux qubit should be
feasible, provided that the right choice of the device param-
eters is made.
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APPENDIX A: MATRICES C, CV, M0, AND N

The definitions of the derived matrices C, CV, M0, and N
that enter the Hamiltonian are given in Refs. 26 and 27 for
the general case. Here we apply the theory and derive the
matrices for the particular case of the circuit of Fig. 2. The
derived capacitance matrices are

C 
 CJ + �C 0

0 0
� , �A1�

CV 
 �C,0�T. �A2�

The inductance matrices that enter the potential are

M0 =
1

K
FJKFJK

T , �A3�

N = −
1

K
FJK, �A4�

and M0
T=M0. For the circuit studied here, we obtain

M0 =
1

K	 1 − 1 − 1

− 1 1 1

− 1 1 1

, N =

1

K	 1

− 1

− 1

 . �A5�

APPENDIX B: PROJECTED MATRICES

The three-dimensional problem is mapped into a two-
dimensional one in Sec. III with the matrix

P = 	1 0

0 1

1 − 1

 , �B1�

via the relation �	1 ,	2 ,	3�T=P�	1 ,	2�T. In the case of sym-
metric double well potential, the inductance linearized ma-
trix Llin;L,R

−1 is given by
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Llin;L,R
−1 = M0 + LJ

−1 cos �L,R. �B2�

Because of the symmetry of the potential, we drop the sub-
scripts R and L. Applying the matrix P we obtain Llin,P

−1

=PTLlin
−1P,

Llin,P
−1 =

1

LJ	 �
1

2�
− �

1

2�
− � � 
 . �B3�

In order to simplify the calculation we assume the two ca-
pacitance C1 and C2 to be equal, C1=C2
C and define �
=C /CJ. The projected capacitance matrix CP=PTCP is then
found to be

CP = CJ�1 + � + � − �

− � 1 + � + �
� . �B4�

In this case, the orthogonal matrices that diagonalize the ca-
pacitance matrix CP the linearized inductance matrix Llin,P

−1

are identical, CP=OTCdO and Llin,P
−1 =OT�O. The frequency

matrix �=diag��� ,��� is given by

�2 = �LC
2 	

1

4�2�1 + ��2 0

0
1 − 4�2

4�2�1 + 2� + ��2

 , �B5�

where �LC
2 =1/LJCJ. The matrix M is then diagonalized by

the same orthogonal matrix O and, in the basis where it is
diagonal, can be written

M =� EJ

8EC	�
1 + �

2�
0

0 ��4�2 − 1��1 + 2� + ��
2�


 .

�B6�

APPENDIX C: THE FUNCTIONS F1 AND F�

We give here an explicit formula for the intracell and
intercell overlaps s1 and s2 as functions of �, EJ /EC and
C /CJ,

s1 = exp�−
EJ

4�2�EC

�arccos2� 1

2�
���4�2 − 1��1 + 2� + C/CJ�� , �C1�

s2 = exp�−
EJ

16EC
�
2�1 + C/CJ

2�
+ �
 − 2

�arccos� 1

2�
��2��4�2 − 1��1 + 2� + C/CJ�

2�
�� . �C2�

Through these quantities we can express F1 and F� as func-
tions of k1 and k2, with ki=CiVi /2e,

F1�k1,k2� =
���k1,k2��

EJ
coth� ���k1,k2��

2kBT
�F̃��k1,k2� ,

�C3�

F��k1,k2� =
4

det2�C� �
i=1,2

�
„C1iM22 sin�2
k2 − ��

− C2iM11 sin�2
k1 + ��…

+ �C2iM11 + C1iM22�arccos� 1

2�
�

�� s1

s2
sin��� + sin�2
k1 + �� − sin�2k2 − ����2

,

�C4�

where F̃� is given by F�, once the sin are replaced by cos.
Cij and Mij are the entries of the matrices C and M defined
in Appendix B. The gap ��� and the relative phase between
the states �0� and �1� are given by

���k1,k2�� = 2�
„t1 + 2t2 cos�
�k1 − k2��cos�
�k1 + k2��…2 + 4t2

2 cos�
�k1 + k2��sin�
�k1 − k2�� , �C5�

tan � =
2t2 cos�
�k1 + k2��sin�
�k1 − k2��

t1 + 2t2 cos�
�k1 − k2��cos�
�k1 + k2��
. �C6�
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